Heat stress assessment during intermittent work under different environmental conditions and clothing combinations of effective wet bulb globe temperature (WBGT)

NEWS
제품소개
빠른상담
  • 빠른상담전화
  • SITE_TEL
  • - -

Environemtal & Exercise Physiology Lab

RESEARCH
The Environmental & Exercise Physiology Lab
Publication
Heat stress assessment during intermittent work under different environmental conditions and clothing combinations of effective wet bulb globe temperature (WBGT)
Yongsuk Seo, Jeffrey Powell, Amanda Strauch, Raymond Roberge, Glen P. Kenny, Jung Hyun Kim
Global CampusGraduate School of Physical Education

Abstract

This study examined whether different combinations of ambient temperature and relative humidity for the effective wet bulb globe temperature, in conjunction with two different levels of clothing adjustment factors, elicit a similar level of heat strain consistent with the current threshold limit value guidelines. Twelve healthy, physically active men performed four 15-min sessions of cycling at a fixed rate of metabolic heat production of 350 watts. Each trial was separated by a 15-min recovery period under four conditions: (1) Cotton coveralls + dry condition (WD: 45.5 °C dry-bulb, 15% relative humidity); (2) Cotton coveralls + humid condition (WH: 31 °C dry-bulb, 84% relative humidity); (3) Protective clothing + dry condition (PD: 30 °C dry-bulb, 15% relative humidity); and (4) Protective clothing + humid condition (PH: 20 °C dry-bulb, 80% relative humidity). Gloves (mining or chemical) and headgear (helmet or powered air-purifying respirator) were removed during recovery with hydration ad libitum. Rectal temperature (Tre), skin temperature (Tsk), physiological heat strain (PSI), perceptual heat strain (PeSI), and body heat content were calculated. At the end of the 2-hr trials, Tre remained below 38 °C and the magnitude of Tre elevation was not greater than 1 °C in all conditions (WD: 0.9, WH: 0.8, WH: 0.7, and PD: 0.6 °C). However, Tsk was significantly increased by approximately 2.1 ± 0.8 °C across all conditions (all p ≤ 0.001). The increase in Tsk was the highest in WD followed by PD, WH, and PH conditions (all p ≤ 0.001). Although PSI and PeSI did not indicate severe heat strain during the 2-hr intermittent work period, PSI and PeSI were significantly increased over time (p ≤ 0.001). This study showed that core temperature and heat strain indices (PSI and PeSI) increased similarly across the four conditions. However, given that core temperature increased continuously during the work session, it is likely that the American Conference of Governmental Industrial Hygienist’s TLV® upper limit core temperature of 38.0 °C may be surpassed during extended work periods under all conditions.

Original languageEnglish
Pages (from-to)467-476
Number of pages10
JournalJournal of Occupational and Enviromental HygieneJournal of Occupational and Environmental Hygiene
Volume16
Issue number7
Publication statusPublished - 3 Jul 2019

Bibliographical note

Publisher Copyright:
©, This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.